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Executive Summary 

Development Standards & Practices Used 
Software 

● PyTorch - library for machine learning 

Hardware 

● UAV - for taking photographs of the pavement 
● UAV mounted photography equipment - for taking photographs of 

pavement 

Standards 

● IEEE 12207 - Software life-cycle processes 
● IEEE 29119-2015 - ISO/IEC/IEEE International Standard - Software and 

systems engineering--Software testing 

SUMMARY OF REQUIREMENTS 

● UAV can take photographs of pavement 
● Photos will be taken on sunny or overcast days with no precipitation 
● Software will be able to detect cracks and joints within concrete 
● Software will be able to correctly classify cracks and joints 

APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM  

● Com S 309: Software Development Practices 
● Com S 319: Construction of User Interfaces 
● Com S 311: Introduction to the design and Analysis of Algorithms 
● CprE 329: Software Project Management 

 

NEW SKILLS/KNOWLEDGE ACQUIRED THAT WAS NOT TAUGHT IN COURSES 

● Machine learning using PyTorch library 
● Image processing with Python 
● Differences between cracks and joints in concrete 
● How to utilize Iowa State University’s High-Performance Computing (HPC)  
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1 Introduction 
1.1 ACKNOWLEDGEMENT 

Our team would like to acknowledge and thank our client within Iowa State’s 
Civil, Construction and Environmental Engineering department, Muhammad 
Ahmad Siddique, for the assistance he has provided throughout the project. From 
the beginning, Ahmad has been proactive in assisting our team with design 
specifications, equipment, and initial data. Throughout the project, Ahmad was 
available to answer questions and was willing to help us in whatever manner he 
could. 

1.2 PROBLEM AND PROJECT STATEMENT 

Problem Statement 

Due to the weather fluctuations in Iowa and throughout the Midwest, concrete 
and other road surfaces are constantly changing causing potholes, cracks, and 
other problems that create hazardous and at times, undrivable road conditions. 
Currently the images or videos collected by UAV must be carefully examined by an 
operator to manually identify the cracks over long pavements. The aim of this 
project is to develop advanced techniques and algorithms to detect and classify the 
cracks on the transportation infrastructure using the data provided by the UAV 
based imagers. 
 

Project Statement 

The purpose of our project is to provide a way to identify cracks and their 
classifications in pavement via photos taken by an Unmanned Aerial Vehicle.  
 
This will be accomplished by using machine learning algorithms and image 
processing. We will train a machine learning model by creating an artificial neural 
network that can identify whether a given image has a crack in it or not. The 
model will be trained using a large dataset of open-source images of 
cracked/non-cracked pavement. The UAV will take photos of various concrete 
roads which will be provided to us by the client. Finally, these images will be run 
through our machine learning model and, after image processing, will be 
highlighted in areas where cracks are detected by our algorithm. Cracks and joints 
in the concrete will be classified and highlighted separately to show distinction. In 
addition, we will supply our client with an intuitive user interface that will help 
them to quickly detect cracks and joints in a collection of images. 
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By being able to identify cracks and their classifications, any department charged 
with fixing and maintaining roads will be able to quickly identify roads in the most 
critical conditions. As a result, crews will be able to prioritize their work and create 
safer driving conditions. 

1.3 OPERATIONAL ENVIRONMENT 

The main operational environment for this project will consist of days with clear or 
overcast skies and no precipitation. While the overcast conditions will alter the 
pictures will still be able to run through image processing whereas precipitation 
could alter the photos beyond our capabilities. In addition, the UAVs that are used 
in this project will only fly with no precipitation.  
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1.4 REQUIREMENTS 

Economic 

● Software cost will be kept minimal (use free/open source software) 
● The cost to operate the UAV will stay at a minimum 

Environmental 

● UAV flights will not impact the surrounding environments 
● Conditions for flight must be taken into account when flying 

Outcome 

● Software will be able to detect cracks within concrete and e roads 
● Software will be able to detect different surface areas (concrete, asphalt, 

gravel) 
● Software will be able to categorize different cracks (joints vs. cracks) 

Functional Requirements 

● The software will teach itself what cracks in pavement are and train itself to 
identify them in new images. 

Non-functional Requirements 

● The software will be simplified so that a user does not have to have an in 
depth understanding of command prompt to run the program. 

● The software should be portable so that once it is trained a user does not 
need a powerful computer to identify cracks. 

● The software should clearly highlight places of cracks for easy verification 
for the user. 

1.5 INTENDED USERS AND USES 

This project is intended to be used by professionals such as construction 
engineers, researchers, and Department of Transportation employees and officials, 
as an additional resource to evaluate existing infrastructure including roads and 
bridges. This will assist in prioritizing repairs and maintenance to roads and 
bridges in critical conditions in order to ensure they stay safe and drivable. 
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1.6 ASSUMPTIONS AND LIMITATIONS 

Assumptions 

● Client will provide us with test images to verify the software works 
correctly. 

● Surfaces will have cracks to identify (most surfaces have some form of crack 
or joints). 

● A high-performance computer can be used to train the software. 

Limitations 

● UAV flying must be planned and will not always be available for use (FAA 
laws since ISU is within 5 miles of an airport) 

● UAV can only fly to a certain height for picture to be useful (photo 
equipment limitation) 

● UAV flight cannot be continuous (UAV hardware limitations) 
● There is no budget for the project, thus, we are constrained to using Iowa 

State University resources. 

1.7 EXPECTED END PRODUCT AND DELIVERABLES 

The end product and deliverable to the client will be a software that can intake 
photographs of roads and identify and classify cracks and joints. This software can 
be used to help those assessing infrastructure conditions and help prioritize roads 
for maintenance and repair. The software will be delivered in two phases. The first 
phase will be delivered by December 13, 2019 and will be a software that identifies 
any type of cracking in concrete or asphalt. The second phase will be delivered no 
later than May 1, 2020 and will be software that, in addition to phase 1, will also be 
able to classify the cracks into different types and include a user interface for the 
client to use. 
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2. Specifications and Analysis 
2.1 PROPOSED DESIGN 

 
Figure 2.1 - Proposed Conceptual Design  
 
We have decided that our project will use machine learning to identify cracks in 
the pavement. After looking at a few options, we decided upon using PyTorch due 
to its ease of use and extensive documentation. Since it is open source, it is also 
free to use. This meets our economic requirement of our project, as it will 
dramatically reduce man-hours previously required to examine every picture, and 
there is no cost associated with using the software. We also looked at using 
TensorFlow, another commonly used software library for developing machine 
learning programs. However, after comparing the two libraries, we found that 
there were more resources to help us along the way for PyTorch in contrast to 
TensorFlow; such as, more questions answered on discussion boards as well as 
more YouTube tutorials and open-source projects. Overall, we found the learning 
curve for PyTorch was better fitting to our level of experience. We will train the 
model with a dataset of 20,000 uncracked and 20,000 cracked images of concrete. 
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Using a dataset this large allows the model to have a very high confidence level as 
opposed to the 300 images we were using initially. We will take the 40,000 images 
and use 70% of the images for training and 30% to test the accuracy of the model. 
This creates an epoch with the selected dataset confidence interval. An epoch is 
when all images in the training set are used to train the model. 
 

2.2 DESIGN ANALYSIS 

After looking at different options for machine learning algorithms, we decided that 
PyTorch would be a better option than its closest competitor TensorFlow. This is 
because of PyTorch being easier to use and also having more documentation. We 
have also created a Python script that crops images down so that they can be easily 
analyzed by the software. 

2.3 DEVELOPMENT PROCESS 

We will follow an Agile-like development process. Since the majority of our project 
revolves around the machine learning algorithm, most of our tasks will involve 
removing errors and improving its accuracy. Working in 2-week sprints will also 
allow us to always have something new to present to our client. The following 
chart illustrates the project development flow. The timeline of development can be 
found in both Figure-4.1 and Table-4.1. 

 
 
Figure 2.3 - Project Development Flowchart 
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2.4 DESIGN PLAN 

The design for our product is relatively straightforward since the project’s focus is 
using artificial intelligence to detect, identify, and classify cracks based on UAV 
imagery. All the algorithms will be developed using the PyTorch open source 
library for Python. This algorithm will be able to take a photo, break it down into 
smaller images, identify and classify cracks in the small images, and then piece the 
photo back together with the added data.  
 
Our user interface will be a simple interface that will allow a client to use the 
algorithm without directly interacting with the script. The user should be able to 
simply upload a photo, wait for the algorithm to process the image, and be able to 
view the new photo with the added data requested.  
 
The development flow of the work can be found in Figure 2.3 (previous section). 
This chart denotes the flow of the work shows how some processes can be worked 
on simultaneously.  

3. Statement of Work 
3.1 PREVIOUS WORK AND LITERATURE 

Our code is based off a research paper titled Deep Learning-Based Crack Damage 
Detection Using Convolutional Neural Networks by Young-Jin Cha[1]. This paper 
captures, in essence, what needed to be accomplished for this design project. This 
research paper talks about many aspects in regards to machine learning and neural 
networks. It described the higher-level architecture which was needed to correctly 
detect concrete cracks based on imagery. It goes into detail on what each of the 
layers of the model should entail. There were multiple GitHub repositories 
implementing similar models that we could reference to create our machine 
learning model. Our project will use these previous projects as a starting point to 
machine learning for image detection. A lot of these repositories of crack detection 
were using TensorFlow and had a lack of documentation which made the 
understanding of different algorithm examples a lot harder. What expands our 
project beyond simple crack detection is the requirement to classify cracks and 
joints as separately recognized entities. 
 
With all the information from these projects, we should be able to focus on 
improving the detection, as well as adding important features, such as showing the 
difference between cracks and joints. 
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3.2 TECHNOLOGY CONSIDERATIONS 

The current technology used by researchers in identifying cracks in pavement 
involves printing off all the images and then circling by hand each crack that 
exists. This is very time consuming and should be automated. There have been 
attempts to use machine learning to detect cracks in pavement, however none of 
them are complete solutions. Most are not able to detect the difference between 
cracks in concrete and joints between different sections, and grass is frequently 
identified as cracks. Most examples we found also used datasets of around 4000 
images to train the program. In order for a model to be trained to a higher 
confidence level, there must be large datasets, which is hard to come by without 
manually creating/gathering the images for the set.  
 

3.3 TASK DECOMPOSITION 

We have divided this project into a few main parts. The first task will be to create 
an algorithm that is trained to identify cracks in pavement. At this point the 
program will only be focused on identifying anything that appears to be a crack in 
the pavement, which means that shadows, joints, and grass will most likely still be 
detected. The next task will be to have the program no longer identify shadows 
and grass as cracks and identify joints in a different manner. The final task will be 
to create a simple user interface for the program so that researchers will not have 
to run the program through a command line. 
 
The following chart breaks down the milestones and necessary tasks. Some tasks 
will be worked on at the same time as others (ex. UI development for crack 
detection and training the pavement classification algorithm) 
 

Milestone/Tasks Task Description 

Project Setup and Start Meet with client and determine scope, 
gather initial information for the project, 
and begin initial research 

Client Meeting Meet with client to determine scope and 
product expectations 

Initial Project Planning Determine research that needs to be done 
and establish timeline with milestones and 
tasks 
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Initial Project Research Research tools to be used, working with 
algorithm learning, and other research as 
necessary to fill the technical knowledge 
gap 

Train Crack Detection Algorithm Train crack detection algorithm with 80% 
verified accuracy 

Create Algorithm to Breakdown Images Develop a script to break down images to 
size of 128x128 pixels to begin training the 
algorithm 

Train Algorithm Use data sets to train the algorithm to 
recognize cracks. Data sets used will be 
open source. 

Test Crack Detection Algorithm Testing will consist of automated and 
manual verification of algorithm accuracy. 
As needed, new photos can be used to 
ensure the correctness of the algorithm 

Train Pavement Classification Algorithm Train pavement classification algorithm 
with 80% verified accuracy 

Train Algorithm Use datasets to train the algorithm to 
identify types of pavements. This will be 
used in the future to classify different types 
of cracks 

Integrate Pavement Classification Algorithm Algorithm will need to be integrated with 
crack detection. Both crack and pavement 
type will be used as factors to classify 
cracks later in the project 

Test Pavement Classification Algorithm Test and ensure accuracy of pavement 
types. This will be tested both before and 
after integration and will be both manual 
and automated. 

Train Crack Classification Algorithm Train pavement classification algorithm 
with 80% verified accuracy 
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Train Algorithm This algorithm will take into account 
previous crack patterns and pavement to 
determine the correct classification for 
cracks.  

Integrate Crack Classification Algorithm This algorithm will use additional data that 
needs to be integrated with the last two 
algorithms. Classification will be the most 
complex part of the project due to the 
number of factors taken into account. 

Test Crack Classification Algorithm Testing will be done throughout the 
process. Both manual and automated 
testing will be used to ensure accuracy. 

Develop UI Create a user interface that allows our 
client to upload a photo and obtain the 
results without running the algorithm 
directly. 

Create UI for Crack Detection This UI will be completed first and will 
take the most amount of time. It will allow 
a user to upload a photo and obtain the 
data. 

Integrate UI for Pavement Algorithm This UI will be integrated as development 
for crack classification is happening.  

Integrate UI for Crack Classification  This UI will be the final one developed for 
the project. This will be the one delivered 
to the client. 

Full Product Testing After all the development has been 
completed and integrated, we will conduct 
full product testing using both automated 
and manual testing to verify overall 
accuracy of 80% crack classification. 

Table 3.3 - Task Decomposition  
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3.4 POSSIBLE RISKS AND RISK MANAGEMENT 

As with any project, there will be an inherent risk. Below are the identified risks 
and mitigations to reduce the risk to the lowest possible severity. 

Unmanned Aerial Flying 

Risk 

Flying UAVs require a specific skill set that not everybody on the team has. UAVs 
must adhere to FAA laws and since Iowa State University is within 5 miles of an 
airport, flight plans must be submitted in advance. 

Mitigation 

This risk is highly mitigated by our client’s ability and experience flying UAVs. Our 
client has both the resources, skills, and knowledge to safely operate a UAV and 
has had 9 years’ experience in UAV photography. 
 

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA 

The following major milestones will be used as a project guide to determine 
progress. 
 

Crack Detection 

The algorithm to detect cracks will be functioning and can accurately identify 80% 
of cracks in a photo. This accuracy will be determined by automated and manual 
testing. 

Pavement Detection 

The algorithm to detect cracks will be functioning and can accurately classify the 
pavement type in a photo with 80% accuracy. This accuracy will be determined by 
automated and manual testing. 

Crack Classification 

The algorithm is able to classify cracks found within a photo. This is considered 
complete when at least 80% of cracks can be correctly classified based on 
pavement type, shape, depth, and patterns. This will be validated through manual 
and automated testing. 
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UI Development 

This will be considered complete when a user can upload a photo, start the 
algorithm, and receive the output image with 99% reliability.  

Full Product Testing 

After all the development and integration is complete, we will test the full product 
to ensure overall accuracy and reliability.  

Deliver End Product 

This will be complete when our client gets the full tested product. 

3.6 PROJECT TRACKING PROCEDURES 

As stated above, our team will use an agile-like development process. Tools that 
will be used to track project progress will be as follows: 
 

● Discord - Used for team member communication 
● WhatsApp/Text Message - Used to communicate with client  
● Email - Used to communicate between group and client 
● Google Drive - Used to store documents needed for project and seamless 

collaboration for editing. 
● GitLab/GitIssues - Repository for all code. Git Issues will be used to track all 

“fixes” that need to happen 
● Trello - Since we are following an agile process, we will use Trello to track 

tasks, their progress, and completion. 
● Other relevant tools will be used as needed. 

3.7 EXPECTED RESULTS AND VALIDATION 

The desired outcome for the projects will be in two stages: the identification of 
cracks, and the classification of cracks. 

Crack Identification 

The desired results for this will be that after the algorithm has been trained, it will 
be able to identify all cracks in concrete or asphalt. At this stage, the identification 
of cracks will not be dependent on the type of crack, but whether one is present 
there or not. To test our algorithm, we will use a series of pictures we currently 
have as well as new ones that we can take once the algorithm has been accurate 
with the current photos. At a high level, we will confirm the algorithm works when 
it can correctly identify at least 80% of cracks in the photos. Once we get to this 
accuracy, we will begin to move towards the next step while continuing the 
training of the algorithm to 100% of cracks. 
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Crack Classification 

The desired result for this stage will be the algorithm being able to recognize the 
difference between a crack and a joint in concrete. As a stretch goal, the algorithm 
will also be able to identify different types of cracking patterns within concrete. To 
test the algorithm, we will use the same process as stated for crack identification. 
At a high level, we will confirm the algorithm works once it is able to correctly 
identify 80% of cracks and then refine the process to 100% of cracks. 

4. Project Timeline, Estimated Resources, and 
Challenges 
 

4.1 PROJECT TIMELINE 

Figure 4.1 - Gantt Chart of Timeline 
 

Task Start Date End Date 

Client Meeting  9/12/2019 

Project Start  9/22/2019 

Initial Project Planning 9/12/2019 9/26/2019 
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Create Algorithm to 
Breakdown Images 

9/22/2019 9/28/2019 

Initial Project Research 9/12/2019 10/15/2019 

Train Crack Detection 
Algorithm 

10/9/2019 11/16/2019 

Crack Detection Complete  12/3/2019 

Test Crack Detection 
Algorithm 

1/14/2020 1/21/2020 

Train Pavement 
Classification Algorithm 

1/14/2020 2/7/2020 

Develop UI for Crack 
Detection 

1/14/2020 2/7/2020 

Pavement Classification 
Complete 

 2/7/2020 

Test Pavement 
Classification Algorithm 

2/7/2020 2/14/2020 

Integrate Pavement 
Classification  

2/7/2020 2/28/2020 

Crack Classification 
Complete 

 4/10/2020 

Train Crack Classification 
Algorithm 

2/7/2020 4/20/2020 

Finish UI 4/10/2020 4/27/2020 

UI Complete  4/27/2020 

Testing Complete  4/27/2020 

Full Product Testing 4/27/2019 5/1/2020 
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Deliver Project  5/1/2020 

Table 4.1 - Gantt Chart Product Timeline Key 
 
This schedule has been made to allow time for our group to research, develop, and 
test each component as we build the product. As we continue to train the 
algorithm for accuracy, we will also be adding additional requirements. As a result, 
our timeline is accounting for the increased complexity for both development and 
testing. 
 
In addition to the algorithm, we are also developing a user interface that will allow 
a user to use the algorithm without needing to run it through a command prompt. 
This will be developed alongside the algorithm and will be tested for reliability.  
 
Overall, our timeline has been created to account for increasing complexity of the 
algorithm development, testing and remediation, experience of the team, and any 
additional work that will need to be completed. 
 

4.2 FEASIBILITY ASSESSMENT 

This project should be able to be completed in the time given. Given the stages of 
the project, we project to have the crack detection portion finished at the end of 
the semester. In the spring semester, we will continue to work on identifying and 
classifying different types of cracks. The degree to which we are able to do this will 
be dependent on identifying patterns within the datasets.  
 

4.3 PERSONNEL EFFORT REQUIREMENTS 

The following chart is the estimated time breakdown of all the tasks. This timeline 
is subject to change. Task descriptions can be found in Table-3.3. 
 

Task Estimate 
Days to 
Complete 

Project Setup and Start 48 Days 

Client Meeting 1 Day 

Initial Project Planning 14 Days 

Initial Project Research 33Days 

SDMAY20-13     19 
 



Train Crack Detection Algorithm 51 Days 

Create Algorithm to Breakdown Images 6 Days 

Train Algorithm 38 Days 

Test Crack Detection Algorithm 7 Days 

Train Pavement Classification Algorithm 55 Days 

Train Algorithm 24 Days 

Integrate Pavement Classification Algorithm 21 Days 

Test Pavement Classification Algorithm 7 Days 

Train Crack Classification Algorithm 73 Days 

Train Algorithm 45 Days 

Integrate Crack Classification Algorithm 14 Days 

Test Crack Classification Algorithm 14 Days 

Develop UI 40 Days 

Create UI for Crack Detection 24 Days 

Integrate UI for Pavement Algorithm 8.5 Days 

Integrate UI for Crack Classification  8.5 Days 

Full Product Testing  4 Days 

Days Allocated for Project 273 Days 

Table 4.3 - Personnel Effort Requirements 
 

4.4 OTHER RESOURCE REQUIREMENTS 

Outside of financial resources, our project will need access to a UAV, a 
High-Performance Computing (HPC), and a dataset to train the model. Our client 
has provided us access to the UAV photography he has previously taken and has 
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offered the ability to take more photos should we need it. The HPC will be 
available through a cluster provided by the Department of Electrical and 
Computer Engineering. Lastly, the dataset and library we will be using are both 
open source. 
 

4.5 FINANCIAL REQUIREMENTS 

The financial resources for this project are limited. The products we are using are 
open source and the high-performance computing cost will be covered by the 
Department of Electrical and Computer Engineering. 

5. Testing and Implementation 
To test and implement our project, we need to verify that our algorithm works on 
a variety of photos that could include grass, cars, puddles, shadows, and joints. To 
test these different scenarios, we are doing functional testing. Functional testing in 
our case is running our trained epoch on specific hand-picked images. These 
images relate to each of the possible cases that could affect crack detection 
(shadows, puddles, cars, etc.). Next, depending on the accuracy of the detected 
cracks with the assigned obstacle(s), we then change our algorithm accordingly. 
Then, we retrain the updated epoch and check the accuracy of the crack detection 
in the same image. We repeat this process until the final accuracy rate of the 
picture meets our standards. 

5.1 INTERFACE SPECIFICATIONS 

In the future, we will have an interface that allows us to select which epoch we 
want to run. We will also be able to specify a folder or a group of images that we 
want the epoch to be run on. The interface will then take the response (accuracy 
rate and edited images), create a pop-up window with buttons such as “open 
containing folder” so the user is easily able to access the edited images, “edit code” 
for when the accuracy rate is not satisfactory, “run again with different epoch” to 
allow the user to run the same images with a different epoch, “run again with 
different images” for when the user wants to run the same epoch on different 
images. Currently, we run our python scripts from the command prompt and use 
the HCP from Iowa State to train our algorithm to create epochs. 

5.2 HARDWARE AND SOFTWARE 

No already existing software has been used in our testing phase thus far. However, 
we developed some useful python scripts to help assure the input images are 
correct for training our algorithm. One of these scripts is being used to resize any 
input picture to the necessary size of 128p x 128p. 
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5.3 FUNCTIONAL TESTING 

For our functional testing, we took some of the most common images in our test 
set and had our trained epochs analyze them. This took many trials. Once we were 
satisfied with the success rate of the crack detection on the basic set of images, we 
went on to have the epochs analyze the less common cases. These cases include 
images with certain objects that could mess with the analyzation of cracks using 
our algorithm. 

5.4 NON-FUNCTIONAL TESTING 

Currently we have tested for testability, accuracy, timeliness, and reliability. Most 
of these non-functional requirements were tested while training and testing the 
epochs. First off, we made sure there was a way to test our program. Then, we 
made sure the program gives an accurate output, gives an output in a timely 
manner, and is reliable in the sense that it rarely crashes. In the future, we will do 
more non-functional testing to make sure our program meets a multitude of 
non-functional requirements. Some examples of other non-functional 
requirements that we will test for include customizability (such as inputting 
images of any size), maintainability (the system is able to be easily repaired), 
efficiency (no unnecessary loops or repeated code), evolvability (ability to modify 
program according to the client’s needs), learnability (how easily the client is able 
to understand what the output program means), stability (the rate of consistently 
accurate results), and operability (how easily the client is able to run the program).  

5.5 PROCESS 

Our testing and implementation process started by looking at how our algorithm 
was analyzing the test images. One after another, through trial and error, we were 
able to come up with certain values that seem to work best for detecting cracks in 
the road.  

5.6 RESULTS 

Our algorithm is currently able to detect cracks using a 97% accurate trained 
epoch. Our most recent project milestone to be completed is identifying cracks. 
When the model was initially being trained, the epoch score was at 67%. Since 
then, the epoch score has risen to 97%. We learned, after setting up the model, 
that accuracy can be increased by rotating through datasets.  
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Figure 5.6 - Current Algorithm Output (Epoch Score of 97%) 

6. Closing Material 
6.1 CONCLUSION 

Our project is to create a product that helps with identifying and classifying 
cracks. The end goal is to deliver a quality product to our client that will classify 
cracks based on the type of pavement and previously identified crack patterns. We 
will work to achieve the end goal by completing the major milestones according to 
the schedule outlined within this document.  
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6.3 APPENDICES 

Concrete Data Set: 
https://data.mendeley.com/datasets/5y9wdsg2zt/2#file-c0d86f9f-852e-4d00-bf45-
9a0e24e3b932 
 
GitHub Repositories: 

● https://github.com/pytorch/examples/tree/master/mnist 
● https://github.com/pytorch/examples/tree/master/imagenet 
● https://github.com/warmspringwinds/pytorch-segmentation-detection 
● https://github.com/fyangneil/pavement-crack-detection 
● https://github.com/satyenrajpal/Concrete-Crack-Detection 
● https://github.com/Sarthakdtu/Road-Cracks-Detection-Neural-Network- 
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