
Detection and Classification of
Cracks on Transportation

Infrastructure using UAV Based
Aerial Imagery

DESIGN DOCUMENT

TEAM: SDMAY20-13
CLIENT: MUHAMMAD AHMAD SIDDIQUE

ADVISOR: DR. HALIL CEYLAN

TEAM MEMBERS
LAUREN ARNER - PROJECT MANAGER
BENJAMIN FERREIRA - TESTING LEAD

MADI JACOBSEN - DATA LEAD
IAN SEAL - REPORTING LEAD

JOHN SCHNOEBELEN - SOFTWARE DEVELOPER
JACK TEMPLE - LEAD SOFTWARE DEVELOPER

SDMAY20-13@IASTATE.EDU

 HTTPS://SDMAY20-13.SD.ECE.IASTATE.EDU

REVISED: DECEMBER 8, 2019 VERSION 3

Executive Summary

Development Standards & Practices Used
Software

● PyTorch - library for machine learning

Hardware

● UAV - for taking photographs of the pavement
● UAV mounted photography equipment - for taking photographs of

pavement

Standards

● IEEE 12207 - Software life-cycle processes
● IEEE 29119-2015 - ISO/IEC/IEEE International Standard - Software and

systems engineering--Software testing

SUMMARY OF REQUIREMENTS

● UAV can take photographs of pavement
● Photos will be taken on sunny or overcast days with no precipitation
● Software will be able to detect cracks and joints within concrete
● Software will be able to correctly classify cracks and joints

APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM

● Com S 309: Software Development Practices
● Com S 319: Construction of User Interfaces
● Com S 311: Introduction to the design and Analysis of Algorithms
● CprE 329: Software Project Management

NEW SKILLS/KNOWLEDGE ACQUIRED THAT WAS NOT TAUGHT IN COURSES

● Machine learning using PyTorch library
● Image processing with Python
● Differences between cracks and joints in concrete
● How to utilize Iowa State University’s High-Performance Computing (HPC)

SDMAY20-13 1

Table of Contents

Development Standards & Practices Used 1

Summary of Requirements 1

Applicable Courses from Iowa State University Curriculum 1

New Skills/Knowledge acquired that was not taught in courses 1

Table of Contents 2

Figures/Tables: 4

Definitions: 4

1 Introduction 5

1.1Acknowledgement 5

1.2 Problem and Project Statement 5

1.3 Operational Environment 6

1.4 Requirements 6

1.5 Intended Users and Uses 6

1.6 Assumptions and Limitations 7

1.7 Expected End Product and Deliverables 7

2. Specifications and Analysis 8

2.1 Proposed Design 8

2.2 Design Analysis 9

2.3 Development Process 9

2.4 Design Plan 9

3. Statement of Work 10

3.1 Previous Work And Literature 10

3.2 Technology Considerations 10

3.3 Task Decomposition 11

3.4 Possible Risks And Risk Management 13

3.5 Project Proposed Milestones and Evaluation Criteria 14

3.6 Project Tracking Procedures 15

3.7 Expected Results and Validation 15

SDMAY20-13 2

4. Project Timeline, Estimated Resources, and Challenges 16

4.1 Project Timeline 16

4.2 Feasibility Assessment 18

4.3 Personnel Effort Requirements 18

4.4 Other Resource Requirements 20

4.5 Financial Requirements 20

5. Testing and Implementation 20

5.1 Interface Specifications 21

5.2 Hardware and software 21

5.3 Functional Testing 21

5.4 Non-Functional Testing 21

5.5 Process 22

5.6 Results 22

6. Closing Material 23

6.1 Conclusion 23

6.2 References 24

6.3 Appendices 24

SDMAY20-13 3

Figures/Tables:
Figure 2.1 - Proposed Conceptual Design
Figure 2.3 - Project Development Flowchart
Figure 4.1 - Gantt Chart of Timeline
Figure 5.6 - Current Algorithm Output

Table 3.3 - Task Decomposition
Table 4.1 - Gantt Chart Product Timeline Key
Table 4.3 - Personnel Effort Requirements

Definitions:
GUI - Graphical User Interface
HPC - ISU’s High-Performance Computing system
UAV - Unmanned Aerial Aircraft; a drone that can fly via remote control
UI - User Interface

SDMAY20-13 4

1 Introduction
1.1 ACKNOWLEDGEMENT

Our team would like to acknowledge and thank our client within Iowa State’s
Civil, Construction and Environmental Engineering department, Muhammad
Ahmad Siddique, for the assistance he has provided throughout the project. From
the beginning, Ahmad has been proactive in assisting our team with design
specifications, equipment, and initial data. Throughout the project, Ahmad was
available to answer questions and was willing to help us in whatever manner he
could.

1.2 PROBLEM AND PROJECT STATEMENT

Problem Statement

Due to the weather fluctuations in Iowa and throughout the Midwest, concrete
and other road surfaces are constantly changing causing potholes, cracks, and
other problems that create hazardous and at times, undrivable road conditions.
Currently the images or videos collected by UAV must be carefully examined by an
operator to manually identify the cracks over long pavements. The aim of this
project is to develop advanced techniques and algorithms to detect and classify the
cracks on the transportation infrastructure using the data provided by the UAV
based imagers.

Project Statement

The purpose of our project is to provide a way to identify cracks and their
classifications in pavement via photos taken by an Unmanned Aerial Vehicle.

This will be accomplished by using machine learning algorithms and image
processing. We will train a machine learning model by creating an artificial neural
network that can identify whether a given image has a crack in it or not. The
model will be trained using a large dataset of open-source images of
cracked/non-cracked pavement. The UAV will take photos of various concrete
roads which will be provided to us by the client. Finally, these images will be run
through our machine learning model and, after image processing, will be
highlighted in areas where cracks are detected by our algorithm. Cracks and joints
in the concrete will be classified and highlighted separately to show distinction. In
addition, we will supply our client with an intuitive user interface that will help
them to quickly detect cracks and joints in a collection of images.

SDMAY20-13 5

By being able to identify cracks and their classifications, any department charged
with fixing and maintaining roads will be able to quickly identify roads in the most
critical conditions. As a result, crews will be able to prioritize their work and create
safer driving conditions.

1.3 OPERATIONAL ENVIRONMENT

The main operational environment for this project will consist of days with clear or
overcast skies and no precipitation. While the overcast conditions will alter the
pictures will still be able to run through image processing whereas precipitation
could alter the photos beyond our capabilities. In addition, the UAVs that are used
in this project will only fly with no precipitation.

SDMAY20-13 6

1.4 REQUIREMENTS

Economic

● Software cost will be kept minimal (use free/open source software)
● The cost to operate the UAV will stay at a minimum

Environmental

● UAV flights will not impact the surrounding environments
● Conditions for flight must be taken into account when flying

Outcome

● Software will be able to detect cracks within concrete and e roads
● Software will be able to detect different surface areas (concrete, asphalt,

gravel)
● Software will be able to categorize different cracks (joints vs. cracks)

Functional Requirements

● The software will teach itself what cracks in pavement are and train itself to
identify them in new images.

Non-functional Requirements

● The software will be simplified so that a user does not have to have an in
depth understanding of command prompt to run the program.

● The software should be portable so that once it is trained a user does not
need a powerful computer to identify cracks.

● The software should clearly highlight places of cracks for easy verification
for the user.

1.5 INTENDED USERS AND USES

This project is intended to be used by professionals such as construction
engineers, researchers, and Department of Transportation employees and officials,
as an additional resource to evaluate existing infrastructure including roads and
bridges. This will assist in prioritizing repairs and maintenance to roads and
bridges in critical conditions in order to ensure they stay safe and drivable.

SDMAY20-13 7

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions

● Client will provide us with test images to verify the software works
correctly.

● Surfaces will have cracks to identify (most surfaces have some form of crack
or joints).

● A high-performance computer can be used to train the software.

Limitations

● UAV flying must be planned and will not always be available for use (FAA
laws since ISU is within 5 miles of an airport)

● UAV can only fly to a certain height for picture to be useful (photo
equipment limitation)

● UAV flight cannot be continuous (UAV hardware limitations)
● There is no budget for the project, thus, we are constrained to using Iowa

State University resources.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

The end product and deliverable to the client will be a software that can intake
photographs of roads and identify and classify cracks and joints. This software can
be used to help those assessing infrastructure conditions and help prioritize roads
for maintenance and repair. The software will be delivered in two phases. The first
phase will be delivered by December 13, 2019 and will be a software that identifies
any type of cracking in concrete or asphalt. The second phase will be delivered no
later than May 1, 2020 and will be software that, in addition to phase 1, will also be
able to classify the cracks into different types and include a user interface for the
client to use.

SDMAY20-13 8

2. Specifications and Analysis
2.1 PROPOSED DESIGN

Figure 2.1 - Proposed Conceptual Design

We have decided that our project will use machine learning to identify cracks in
the pavement. After looking at a few options, we decided upon using PyTorch due
to its ease of use and extensive documentation. Since it is open source, it is also
free to use. This meets our economic requirement of our project, as it will
dramatically reduce man-hours previously required to examine every picture, and
there is no cost associated with using the software. We also looked at using
TensorFlow, another commonly used software library for developing machine
learning programs. However, after comparing the two libraries, we found that
there were more resources to help us along the way for PyTorch in contrast to
TensorFlow; such as, more questions answered on discussion boards as well as
more YouTube tutorials and open-source projects. Overall, we found the learning
curve for PyTorch was better fitting to our level of experience. We will train the
model with a dataset of 20,000 uncracked and 20,000 cracked images of concrete.

SDMAY20-13 9

Using a dataset this large allows the model to have a very high confidence level as
opposed to the 300 images we were using initially. We will take the 40,000 images
and use 70% of the images for training and 30% to test the accuracy of the model.
This creates an epoch with the selected dataset confidence interval. An epoch is
when all images in the training set are used to train the model.

2.2 DESIGN ANALYSIS

After looking at different options for machine learning algorithms, we decided that
PyTorch would be a better option than its closest competitor TensorFlow. This is
because of PyTorch being easier to use and also having more documentation. We
have also created a Python script that crops images down so that they can be easily
analyzed by the software.

2.3 DEVELOPMENT PROCESS

We will follow an Agile-like development process. Since the majority of our project
revolves around the machine learning algorithm, most of our tasks will involve
removing errors and improving its accuracy. Working in 2-week sprints will also
allow us to always have something new to present to our client. The following
chart illustrates the project development flow. The timeline of development can be
found in both Figure-4.1 and Table-4.1.

Figure 2.3 - Project Development Flowchart

SDMAY20-13 10

2.4 DESIGN PLAN

The design for our product is relatively straightforward since the project’s focus is
using artificial intelligence to detect, identify, and classify cracks based on UAV
imagery. All the algorithms will be developed using the PyTorch open source
library for Python. This algorithm will be able to take a photo, break it down into
smaller images, identify and classify cracks in the small images, and then piece the
photo back together with the added data.

Our user interface will be a simple interface that will allow a client to use the
algorithm without directly interacting with the script. The user should be able to
simply upload a photo, wait for the algorithm to process the image, and be able to
view the new photo with the added data requested.

The development flow of the work can be found in Figure 2.3 (previous section).
This chart denotes the flow of the work shows how some processes can be worked
on simultaneously.

3. Statement of Work
3.1 PREVIOUS WORK AND LITERATURE

Our code is based off a research paper titled Deep Learning-Based Crack Damage
Detection Using Convolutional Neural Networks by Young-Jin Cha[1]. This paper
captures, in essence, what needed to be accomplished for this design project. This
research paper talks about many aspects in regards to machine learning and neural
networks. It described the higher-level architecture which was needed to correctly
detect concrete cracks based on imagery. It goes into detail on what each of the
layers of the model should entail. There were multiple GitHub repositories
implementing similar models that we could reference to create our machine
learning model. Our project will use these previous projects as a starting point to
machine learning for image detection. A lot of these repositories of crack detection
were using TensorFlow and had a lack of documentation which made the
understanding of different algorithm examples a lot harder. What expands our
project beyond simple crack detection is the requirement to classify cracks and
joints as separately recognized entities.

With all the information from these projects, we should be able to focus on
improving the detection, as well as adding important features, such as showing the
difference between cracks and joints.

SDMAY20-13 11

3.2 TECHNOLOGY CONSIDERATIONS

The current technology used by researchers in identifying cracks in pavement
involves printing off all the images and then circling by hand each crack that
exists. This is very time consuming and should be automated. There have been
attempts to use machine learning to detect cracks in pavement, however none of
them are complete solutions. Most are not able to detect the difference between
cracks in concrete and joints between different sections, and grass is frequently
identified as cracks. Most examples we found also used datasets of around 4000
images to train the program. In order for a model to be trained to a higher
confidence level, there must be large datasets, which is hard to come by without
manually creating/gathering the images for the set.

3.3 TASK DECOMPOSITION

We have divided this project into a few main parts. The first task will be to create
an algorithm that is trained to identify cracks in pavement. At this point the
program will only be focused on identifying anything that appears to be a crack in
the pavement, which means that shadows, joints, and grass will most likely still be
detected. The next task will be to have the program no longer identify shadows
and grass as cracks and identify joints in a different manner. The final task will be
to create a simple user interface for the program so that researchers will not have
to run the program through a command line.

The following chart breaks down the milestones and necessary tasks. Some tasks
will be worked on at the same time as others (ex. UI development for crack
detection and training the pavement classification algorithm)

Milestone/Tasks Task Description

Project Setup and Start Meet with client and determine scope,
gather initial information for the project,
and begin initial research

Client Meeting Meet with client to determine scope and
product expectations

Initial Project Planning Determine research that needs to be done
and establish timeline with milestones and
tasks

SDMAY20-13 12

Initial Project Research Research tools to be used, working with
algorithm learning, and other research as
necessary to fill the technical knowledge
gap

Train Crack Detection Algorithm Train crack detection algorithm with 80%
verified accuracy

Create Algorithm to Breakdown Images Develop a script to break down images to
size of 128x128 pixels to begin training the
algorithm

Train Algorithm Use data sets to train the algorithm to
recognize cracks. Data sets used will be
open source.

Test Crack Detection Algorithm Testing will consist of automated and
manual verification of algorithm accuracy.
As needed, new photos can be used to
ensure the correctness of the algorithm

Train Pavement Classification Algorithm Train pavement classification algorithm
with 80% verified accuracy

Train Algorithm Use datasets to train the algorithm to
identify types of pavements. This will be
used in the future to classify different types
of cracks

Integrate Pavement Classification Algorithm Algorithm will need to be integrated with
crack detection. Both crack and pavement
type will be used as factors to classify
cracks later in the project

Test Pavement Classification Algorithm Test and ensure accuracy of pavement
types. This will be tested both before and
after integration and will be both manual
and automated.

Train Crack Classification Algorithm Train pavement classification algorithm
with 80% verified accuracy

SDMAY20-13 13

Train Algorithm This algorithm will take into account
previous crack patterns and pavement to
determine the correct classification for
cracks.

Integrate Crack Classification Algorithm This algorithm will use additional data that
needs to be integrated with the last two
algorithms. Classification will be the most
complex part of the project due to the
number of factors taken into account.

Test Crack Classification Algorithm Testing will be done throughout the
process. Both manual and automated
testing will be used to ensure accuracy.

Develop UI Create a user interface that allows our
client to upload a photo and obtain the
results without running the algorithm
directly.

Create UI for Crack Detection This UI will be completed first and will
take the most amount of time. It will allow
a user to upload a photo and obtain the
data.

Integrate UI for Pavement Algorithm This UI will be integrated as development
for crack classification is happening.

Integrate UI for Crack Classification This UI will be the final one developed for
the project. This will be the one delivered
to the client.

Full Product Testing After all the development has been
completed and integrated, we will conduct
full product testing using both automated
and manual testing to verify overall
accuracy of 80% crack classification.

Table 3.3 - Task Decomposition

SDMAY20-13 14

3.4 POSSIBLE RISKS AND RISK MANAGEMENT

As with any project, there will be an inherent risk. Below are the identified risks
and mitigations to reduce the risk to the lowest possible severity.

Unmanned Aerial Flying

Risk

Flying UAVs require a specific skill set that not everybody on the team has. UAVs
must adhere to FAA laws and since Iowa State University is within 5 miles of an
airport, flight plans must be submitted in advance.

Mitigation

This risk is highly mitigated by our client’s ability and experience flying UAVs. Our
client has both the resources, skills, and knowledge to safely operate a UAV and
has had 9 years’ experience in UAV photography.

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

The following major milestones will be used as a project guide to determine
progress.

Crack Detection

The algorithm to detect cracks will be functioning and can accurately identify 80%
of cracks in a photo. This accuracy will be determined by automated and manual
testing.

Pavement Detection

The algorithm to detect cracks will be functioning and can accurately classify the
pavement type in a photo with 80% accuracy. This accuracy will be determined by
automated and manual testing.

Crack Classification

The algorithm is able to classify cracks found within a photo. This is considered
complete when at least 80% of cracks can be correctly classified based on
pavement type, shape, depth, and patterns. This will be validated through manual
and automated testing.

SDMAY20-13 15

UI Development

This will be considered complete when a user can upload a photo, start the
algorithm, and receive the output image with 99% reliability.

Full Product Testing

After all the development and integration is complete, we will test the full product
to ensure overall accuracy and reliability.

Deliver End Product

This will be complete when our client gets the full tested product.

3.6 PROJECT TRACKING PROCEDURES

As stated above, our team will use an agile-like development process. Tools that
will be used to track project progress will be as follows:

● Discord - Used for team member communication
● WhatsApp/Text Message - Used to communicate with client
● Email - Used to communicate between group and client
● Google Drive - Used to store documents needed for project and seamless

collaboration for editing.
● GitLab/GitIssues - Repository for all code. Git Issues will be used to track all

“fixes” that need to happen
● Trello - Since we are following an agile process, we will use Trello to track

tasks, their progress, and completion.
● Other relevant tools will be used as needed.

3.7 EXPECTED RESULTS AND VALIDATION

The desired outcome for the projects will be in two stages: the identification of
cracks, and the classification of cracks.

Crack Identification

The desired results for this will be that after the algorithm has been trained, it will
be able to identify all cracks in concrete or asphalt. At this stage, the identification
of cracks will not be dependent on the type of crack, but whether one is present
there or not. To test our algorithm, we will use a series of pictures we currently
have as well as new ones that we can take once the algorithm has been accurate
with the current photos. At a high level, we will confirm the algorithm works when
it can correctly identify at least 80% of cracks in the photos. Once we get to this
accuracy, we will begin to move towards the next step while continuing the
training of the algorithm to 100% of cracks.

SDMAY20-13 16

Crack Classification

The desired result for this stage will be the algorithm being able to recognize the
difference between a crack and a joint in concrete. As a stretch goal, the algorithm
will also be able to identify different types of cracking patterns within concrete. To
test the algorithm, we will use the same process as stated for crack identification.
At a high level, we will confirm the algorithm works once it is able to correctly
identify 80% of cracks and then refine the process to 100% of cracks.

4. Project Timeline, Estimated Resources, and
Challenges

4.1 PROJECT TIMELINE

Figure 4.1 - Gantt Chart of Timeline

Task Start Date End Date

Client Meeting 9/12/2019

Project Start 9/22/2019

Initial Project Planning 9/12/2019 9/26/2019

SDMAY20-13 17

Create Algorithm to
Breakdown Images

9/22/2019 9/28/2019

Initial Project Research 9/12/2019 10/15/2019

Train Crack Detection
Algorithm

10/9/2019 11/16/2019

Crack Detection Complete 12/3/2019

Test Crack Detection
Algorithm

1/14/2020 1/21/2020

Train Pavement
Classification Algorithm

1/14/2020 2/7/2020

Develop UI for Crack
Detection

1/14/2020 2/7/2020

Pavement Classification
Complete

 2/7/2020

Test Pavement
Classification Algorithm

2/7/2020 2/14/2020

Integrate Pavement
Classification

2/7/2020 2/28/2020

Crack Classification
Complete

 4/10/2020

Train Crack Classification
Algorithm

2/7/2020 4/20/2020

Finish UI 4/10/2020 4/27/2020

UI Complete 4/27/2020

Testing Complete 4/27/2020

Full Product Testing 4/27/2019 5/1/2020

SDMAY20-13 18

Deliver Project 5/1/2020

Table 4.1 - Gantt Chart Product Timeline Key

This schedule has been made to allow time for our group to research, develop, and
test each component as we build the product. As we continue to train the
algorithm for accuracy, we will also be adding additional requirements. As a result,
our timeline is accounting for the increased complexity for both development and
testing.

In addition to the algorithm, we are also developing a user interface that will allow
a user to use the algorithm without needing to run it through a command prompt.
This will be developed alongside the algorithm and will be tested for reliability.

Overall, our timeline has been created to account for increasing complexity of the
algorithm development, testing and remediation, experience of the team, and any
additional work that will need to be completed.

4.2 FEASIBILITY ASSESSMENT

This project should be able to be completed in the time given. Given the stages of
the project, we project to have the crack detection portion finished at the end of
the semester. In the spring semester, we will continue to work on identifying and
classifying different types of cracks. The degree to which we are able to do this will
be dependent on identifying patterns within the datasets.

4.3 PERSONNEL EFFORT REQUIREMENTS

The following chart is the estimated time breakdown of all the tasks. This timeline
is subject to change. Task descriptions can be found in Table-3.3.

Task Estimate
Days to
Complete

Project Setup and Start 48 Days

Client Meeting 1 Day

Initial Project Planning 14 Days

Initial Project Research 33Days

SDMAY20-13 19

Train Crack Detection Algorithm 51 Days

Create Algorithm to Breakdown Images 6 Days

Train Algorithm 38 Days

Test Crack Detection Algorithm 7 Days

Train Pavement Classification Algorithm 55 Days

Train Algorithm 24 Days

Integrate Pavement Classification Algorithm 21 Days

Test Pavement Classification Algorithm 7 Days

Train Crack Classification Algorithm 73 Days

Train Algorithm 45 Days

Integrate Crack Classification Algorithm 14 Days

Test Crack Classification Algorithm 14 Days

Develop UI 40 Days

Create UI for Crack Detection 24 Days

Integrate UI for Pavement Algorithm 8.5 Days

Integrate UI for Crack Classification 8.5 Days

Full Product Testing 4 Days

Days Allocated for Project 273 Days

Table 4.3 - Personnel Effort Requirements

4.4 OTHER RESOURCE REQUIREMENTS

Outside of financial resources, our project will need access to a UAV, a
High-Performance Computing (HPC), and a dataset to train the model. Our client
has provided us access to the UAV photography he has previously taken and has

SDMAY20-13 20

offered the ability to take more photos should we need it. The HPC will be
available through a cluster provided by the Department of Electrical and
Computer Engineering. Lastly, the dataset and library we will be using are both
open source.

4.5 FINANCIAL REQUIREMENTS

The financial resources for this project are limited. The products we are using are
open source and the high-performance computing cost will be covered by the
Department of Electrical and Computer Engineering.

5. Testing and Implementation
To test and implement our project, we need to verify that our algorithm works on
a variety of photos that could include grass, cars, puddles, shadows, and joints. To
test these different scenarios, we are doing functional testing. Functional testing in
our case is running our trained epoch on specific hand-picked images. These
images relate to each of the possible cases that could affect crack detection
(shadows, puddles, cars, etc.). Next, depending on the accuracy of the detected
cracks with the assigned obstacle(s), we then change our algorithm accordingly.
Then, we retrain the updated epoch and check the accuracy of the crack detection
in the same image. We repeat this process until the final accuracy rate of the
picture meets our standards.

5.1 INTERFACE SPECIFICATIONS

In the future, we will have an interface that allows us to select which epoch we
want to run. We will also be able to specify a folder or a group of images that we
want the epoch to be run on. The interface will then take the response (accuracy
rate and edited images), create a pop-up window with buttons such as “open
containing folder” so the user is easily able to access the edited images, “edit code”
for when the accuracy rate is not satisfactory, “run again with different epoch” to
allow the user to run the same images with a different epoch, “run again with
different images” for when the user wants to run the same epoch on different
images. Currently, we run our python scripts from the command prompt and use
the HCP from Iowa State to train our algorithm to create epochs.

5.2 HARDWARE AND SOFTWARE

No already existing software has been used in our testing phase thus far. However,
we developed some useful python scripts to help assure the input images are
correct for training our algorithm. One of these scripts is being used to resize any
input picture to the necessary size of 128p x 128p.

SDMAY20-13 21

5.3 FUNCTIONAL TESTING

For our functional testing, we took some of the most common images in our test
set and had our trained epochs analyze them. This took many trials. Once we were
satisfied with the success rate of the crack detection on the basic set of images, we
went on to have the epochs analyze the less common cases. These cases include
images with certain objects that could mess with the analyzation of cracks using
our algorithm.

5.4 NON-FUNCTIONAL TESTING

Currently we have tested for testability, accuracy, timeliness, and reliability. Most
of these non-functional requirements were tested while training and testing the
epochs. First off, we made sure there was a way to test our program. Then, we
made sure the program gives an accurate output, gives an output in a timely
manner, and is reliable in the sense that it rarely crashes. In the future, we will do
more non-functional testing to make sure our program meets a multitude of
non-functional requirements. Some examples of other non-functional
requirements that we will test for include customizability (such as inputting
images of any size), maintainability (the system is able to be easily repaired),
efficiency (no unnecessary loops or repeated code), evolvability (ability to modify
program according to the client’s needs), learnability (how easily the client is able
to understand what the output program means), stability (the rate of consistently
accurate results), and operability (how easily the client is able to run the program).

5.5 PROCESS

Our testing and implementation process started by looking at how our algorithm
was analyzing the test images. One after another, through trial and error, we were
able to come up with certain values that seem to work best for detecting cracks in
the road.

5.6 RESULTS

Our algorithm is currently able to detect cracks using a 97% accurate trained
epoch. Our most recent project milestone to be completed is identifying cracks.
When the model was initially being trained, the epoch score was at 67%. Since
then, the epoch score has risen to 97%. We learned, after setting up the model,
that accuracy can be increased by rotating through datasets.

SDMAY20-13 22

Figure 5.6 - Current Algorithm Output (Epoch Score of 97%)

6. Closing Material
6.1 CONCLUSION

Our project is to create a product that helps with identifying and classifying
cracks. The end goal is to deliver a quality product to our client that will classify
cracks based on the type of pavement and previously identified crack patterns. We
will work to achieve the end goal by completing the major milestones according to
the schedule outlined within this document.

SDMAY20-13 23

6.2 REFERENCES

[1] Cha, Young-Jin & Choi, Wooram & Buyukozturk, Oral. (2017). Deep
Learning-Based Crack Damage Detection Using Convolutional Neural
Networks. Computer-Aided Civil and Infrastructure Engineering. 32. 361-378.
10.1111/mice.12263.

[2] L. Zhang, F. Yang, Y. Daniel Zhang and Y. J. Zhu, "Road crack detection using

deep convolutional neural network," 2016 IEEE International Conference on
Image Processing (ICIP), Phoenix, AZ, 2016, pp. 3708-3712

6.3 APPENDICES

Concrete Data Set:
https://data.mendeley.com/datasets/5y9wdsg2zt/2#file-c0d86f9f-852e-4d00-bf45-
9a0e24e3b932

GitHub Repositories:

● https://github.com/pytorch/examples/tree/master/mnist
● https://github.com/pytorch/examples/tree/master/imagenet
● https://github.com/warmspringwinds/pytorch-segmentation-detection
● https://github.com/fyangneil/pavement-crack-detection
● https://github.com/satyenrajpal/Concrete-Crack-Detection
● https://github.com/Sarthakdtu/Road-Cracks-Detection-Neural-Network-

SDMAY20-13 24

https://data.mendeley.com/datasets/5y9wdsg2zt/2#file-c0d86f9f-852e-4d00-bf45-9a0e24e3b932
https://data.mendeley.com/datasets/5y9wdsg2zt/2#file-c0d86f9f-852e-4d00-bf45-9a0e24e3b932
https://github.com/pytorch/examples/tree/master/mnist
https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/warmspringwinds/pytorch-segmentation-detection
https://github.com/fyangneil/pavement-crack-detection
https://github.com/satyenrajpal/Concrete-Crack-Detection
https://github.com/Sarthakdtu/Road-Cracks-Detection-Neural-Network-

