
UAV Crack 
Detection 
and 
Classification

Client: Muhammad Ahmad Siddique

Advisor: Dr. Halil Ceylan

Team Members:

Lauren Arner – Project Manager

Benjamin Ferreira – Testing Lead

Madi Jacobsen – Data Lead

Ian Seal – Reporting Lead

John Schnoebelen – Software Developer

Jack Temple – Lead Software Developer

Team Email: sdmay20-13@iastate.edu

Team Website: https://Sdmay20-13.sd.ece.iastate.edu



Project Overview

• Infrastructure across the United 
States is in desperate need of 
repair

• Due to the amount of 
infrastructure across the 
country, identifying cracks and 
areas in need of repair can be 
very time consuming

• Programmatically identifying 
cracks will increase the speed of 
both research and maintenance 



Engineering 
Standards and 
Design 
Practices

Software

• PyTorch – Python library for machine 
learning

• TensorFlow – Python library for 
machine learning

Standards

• IEEE 12207 - Software life-cycle 
processes

• IEEE 29119-2015 - ISO/IEC/IEEE 
International Standard - Software and 
systems engineering--Software testing



Functional 
Requirements

• Identify 80% of cracks accurately

• Ability to identify the difference 
between joints and cracks

• 80% correct classification of 
crack types

• Correct analyzation of cracks 
despite obstacles in images

• Ability to accept large quantities 
of images

• Output images (with accurately 
marked cracks)

Joint

Crack



Conceptual 
Sketch



Functional Decomposition



Back End 
Design

Based on research paper Deep Learning‐Based Crack 
Damage Detection Using Convolutional Neural 
Networks

Breaks image down with each level

40,000 images in dataset

70% are used to train, 30% are used for model 
accuracy



Dataset 
Example



Back End 
Technology

• Open source, lots of documentation

• Ran on HPC for first semester (491)

• Stopped training, HPC wouldn't run project around 
January

Originally used PyTorch for machine learning

• Similar confidence level as PyTorch

• Project trained easier on personal computers

• All development was still in Python, just using a different 
library

• Added recording to .csv file

Switched to TensorFlow project



Example of Good Back End Output



Example of Poor Back End Output



Front End 
Design

Functionality:
• Choose desired directory of 

images

• Run images through crack 
detection model

• Utilize crack detection software 
without running complicated 
shell commands

• Output new folder of images to 
a known location



Testing Process

Functional Non-Functional

To test for accuracy of crack detection, crack identification, and 
pavement type identification:
• Run program, take output images and compare them to 

human processed images, use the proper equation to 
determine true accuracy.

• Input images with obstacles and record the sub-accuracy.
• Modify program accordingly to achieve desired accuracy.

To test for testability, timeliness, reliability, stability, operability, and 
learnability:
• Create a log and keep track of multiple variables each time the 

program is run, such as runtime, output success rate, actual 
accuracy rate, if the program output images, and if the program 
crashes

• Use the log to calculate averages

To test for maintainability, customizability, efficiency, and 
evolvability:
• Make sure code is commented and understandable to other 

industry professionals



Data analysis

Crack Detection 
Accuracy 

(avg): 47.74%

Max Accuracy: 
72.46%

Min Accuracy: 
23.55%



Max Accuracy VS Min accuracy



Functional Results

Self-constrained requirements Actual Functionality

Identify 80% of cracks accurately 47.74% average accuracy

Ability to identify the difference 
between joints and cracks

Functionality not added due to unreached basis of satisfactory crack detection 
accuracy

80% correct classification of road 
type (asphalt vs concrete)

Functionality not added due to unreached basis of satisfactory crack detection 
accuracy

Correct analyzation of cracks despite 
obstacles in images

Obstacles such as cars or poles are detected as false positive. This means we 
could continue to train the program with images of these obstacles to increase 
the actual accuracy rate.

Ability to accept large quantities of 
images

The program is able to process large quantities of images as long as it is being 
run on a system with proper specifications, like Iowa State University’s High-
Performance Computing (HPC) service.

Output images (with accurately 
marked cracks)

The program successfully outputs the images it has processed, and the image 
has markings indicating where a crack was not detected.



Non-Functional Results

Self-constrained requirements​ Actual Functionality

Testable
Timely
Reliable
Stable

The program proves to be testable and timely but does struggle with 
reliability and stability.

Maintainable
Customizability
Efficient
Evolvability

Code is commented and understandable to other industry professionals 
and able to be built onto.

Operable
Learnable

GUI function allows non-technical users to run the model with little 
training.



Conclusions

• When an obstacle, such as a car or pole, is tested, it will typically come back as a false 
positive (preferred over false negative because of how the program is trained).

• One obstacle we did not foresee was grass being analyzed as a crack. This highly skews the 
accuracy rates in some images due to the altitude the images were taken. Altitude 
determines if the image is a majority grass or a majority road in many cases

• We expected the skew of an image due to the angle it was taken to have a dramatic impact, 
but numbers so far show very little difference when the image is straight on compared to 
askew. This is not the case for images taken down the horizon.

• The program tends to do dramatically better when identifying cracks on asphalt roads 
compared to concrete. A 56.61% accuracy rate compared to a 38.86% accuracy rate, 
respectively. Some concrete roads have a grooving throughout them that causes the 
program to return false positives.

• Overall, this program is not ready for use by the clients due to the low accuracy rate, but the 
UI makes it easily learnable for the client once the program detects cracks, crack type, and 
pavement type more accurately.



Future Prospect

• Train pavement detection

• Train crack classification

• Identify a way to distinguish 
between crack types (joint 
and crack)

• Polish the User Interface

• Deploy as an executable 
desktop application



Team Member Contribution Breakdown

Team Member Contributions

Lauren Arner Project Manager, Data Analysis

Benjamin Ferreira Front End

Madi Jacobsen Data Analysis

Ian Seal Back End

John Schnoebelen Front End

Jack Temple Back End


