
DETECTION AND CLASSIFICATION OF 

CRACKS ON TRANSPORTATION 

INFRASTRUCTURE USING UAV BASED 

AERIAL IMAGERY 

FINAL REPORT 

 

Team: SDMAY20-13 

 

Client: Muhammad Ahmad Siddique 

Advisor: Dr. Halil Ceylan 

 

Team Members: 

Lauren Arner – Project Manager 

Benjamin Ferreira – Testing Lead 

Madi Jacobsen – Data Lead 

Ian Seal – Reporting Lead 

John Schnoebelen – Software Developer 

Jack Temple – Lead Software Developer 

 

Team Email: sdmay20-13@iastate.edu 

Team Website: https://Sdmay20-13.sd.ece.iastate.edu 

  



sdmay20-13     1 

EXECUTIVE SUMMARY 

ENGINEERING STANDARDS & DESIGN PRACTICES 

Software 

• PyTorch – Python library for machine learning 

• TensorFlow – Python library for machine learning 

Standards 

• IEEE 12207 - Software life-cycle processes 

• IEEE 29119-2015 - ISO/IEC/IEEE International Standard - Software and systems 

engineering--Software testing 

SUMMARY OF DELIVERABLES 

• Software that can process UAV photos and identify cracks 

• Graphical user interface for client to easily process photos 

APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM  

• COM S 309 – Software Development Practices 

• COM S 319 – Construction of User Interfaces 

• COM S 311 – Introduction to the Design and Analysis of Algorithms 

• STAT 330 – Probability and Statistics for Computer Science 

NEW SKILLS/KNOWLEDGE ACQUIRED NOT TAUGHT IN COURSES 

• Machine learning using PyTorch library 

• Image processing using Python 

• Differences between cracks and joins in concrete 

• Utilizing Iowa State University’s High-Performance Computing (HPC) 

  



sdmay20-13     2 

CONTENTS 

Executive Summary 1 

Engineering standards & Design Practices 1 

Summary of Deliverables 1 

Applicable courses from Iowa State University Curriculum 1 

New Skills/Knowledge Acquired Not Taught In Courses 1 

Figures and Tables 3 

Definitions 3 

Introduction 4 

Acknowledgement 4 

Problem and Project Statement 4 

Intended Users and Uses 5 

Operational Environment 5 

End Product and Deliverables 5 

Previous Work And Literature 6 

Project implementation breakdown 7 

Technology Considerations 7 

Back end 7 

Front End 9 

Testing & Results 10 

Back End 10 

Front End 12 

Closing Material 13 

Conclusion 13 

References 14 

Appendices 14 

Appendix 1. Operation Manual 15 

Appendix 2. Detailed Testing Process 17 

 

 

  

bookmark://_Toc38808739/#_Toc38808739
bookmark://_Toc38808740/#_Toc38808740
bookmark://_Toc38808741/#_Toc38808741
bookmark://_Toc38808742/#_Toc38808742
bookmark://_Toc38808743/#_Toc38808743
bookmark://_Toc38808744/#_Toc38808744
bookmark://_Toc38808745/#_Toc38808745
bookmark://_Toc38808746/#_Toc38808746
bookmark://_Toc38808747/#_Toc38808747
bookmark://_Toc38808748/#_Toc38808748
bookmark://_Toc38808749/#_Toc38808749
bookmark://_Toc38808750/#_Toc38808750
bookmark://_Toc38808751/#_Toc38808751
bookmark://_Toc38808752/#_Toc38808752
bookmark://_Toc38808753/#_Toc38808753
bookmark://_Toc38808754/#_Toc38808754
bookmark://_Toc38808755/#_Toc38808755
bookmark://_Toc38808756/#_Toc38808756
bookmark://_Toc38808757/#_Toc38808757
bookmark://_Toc38808758/#_Toc38808758
bookmark://_Toc38808759/#_Toc38808759
bookmark://_Toc38808760/#_Toc38808760
bookmark://_Toc38808761/#_Toc38808761
bookmark://_Toc38808762/#_Toc38808762
bookmark://_Toc38808763/#_Toc38808763
bookmark://_Toc38808764/#_Toc38808764
bookmark://_Toc38808767/#_Toc38808767


sdmay20-13     3 

FIGURES AND TABLES 

Figure 1. Prototype UI 9 

Figure 2. Image with 128x128 grid overlay 17 

Figure 3. Example of grass to road (not counted as crack) 18 

Figure 4. Example of road to gravel transition (counted as crack) 18 

Figure 5. Control Image 19 

Figure 6. Grid overlay created 20 

Figure 7. Grid overlay on top of image processed through algorithm 21 

 

Table 1. Accuracy Data Table 11 

 

DEFINITIONS 

GUI – Graphical User Interface 

HPC – Iowa State University’s High-Performance Computing System 

UAV – Unmanned Aerial Aircraft; a drone that can be flown remotely 

UI – User Interface 

  



sdmay20-13     4 

INTRODUCTION 

ACKNOWLEDGEMENT 

Our team would like to acknowledge and thank our client within Iowa State’s Civil, 

Construction and Environmental Engineering department, Muhammad Ahmad Siddique, 

for the assistance he has provided throughout the project. From the beginning, Ahmad 

has been proactive in assisting our team with design specifications, equipment, and 

initial data. Throughout the project, Ahmad was available to answer questions and was 

willing to help us in whatever manner he could. 

PROBLEM AND PROJECT STATEMENT 

PROBLEM STATEMENT 

Due to the weather fluctuations in Iowa and throughout the Midwest, concrete and 

other road surfaces are constantly changing causing potholes, cracks, and other 

problems that create hazardous and at times, undrivable road conditions. Currently the 

images or videos collected by UAV must be carefully examined by an operator to 

manually identify the cracks over long pavements 

PROJECT STATEMENT 

The purpose of our project is to provide a way to take photographs from an Unmanned 

Aerial Vehicle, process them, and output meaningful data that can assist users in 

identifying cracks in pavement and changes in cracks over time.  

This has been accomplished by using machine learning algorithms and image 

processing. To do this, we trained a machine learning model by creating an artificial 

neural network that can identify whether a given image has a crack in it or not. The 

model was trained using a large dataset of open-source images of cracked/non-cracked 

pavement. Photos taken by the UAV, which were provided by our client, are then run 

through our machine learning model. During image processing, the algorithm detects 

whether a crack was detected or not. The output is an image where cracks identified will 

be shown.  



sdmay20-13     5 

In addition, we created a graphical user interface that will allow the client to use the 

algorithm as a program to select images and review the output data.  

INTENDED USERS AND USES 

This project is intended to be used by professionals such as construction engineers, 

researchers, and Department of Transportation employees and officials, as an additional 

resource to evaluate existing infrastructure including roads and bridges. This will assist 

in prioritizing repairs and maintenance to roads and bridges in critical conditions in order 

to ensure they stay safe and drivable. 

OPERATIONAL ENVIRONMENT 

The operational environment for this project can be looked at in two ways. The first 

environment would be the operational environment of the product we are creating. This 

product, a software, will be used in an office like environment where a desktop 

computer or laptop is available.  

The second, and more variable, environment would be the one where the images are 

captured by the UAV. This environment is considered more important due to the 

requirements of photos that need to be taken. For best results using the algorithm, the 

photo captured by the UAV should have no shadows and no precipitation. While the 

overcast conditions will alter the pictures will still be able to run through image 

processing whereas precipitation could alter the photos beyond our capabilities. 

END PRODUCT AND DELIVERABLES 

The end product and deliverable to the client will be a software that can intake a 

photograph of a road, identify cracks, and output relevant summary data such as 

percentage of photo identified as a crack and meta data related to the position of the 

UAV where the photo was taken. This software can be used to help those assessing 

infrastructure conditions and prioritize roads for maintenance and repair. This software 

will be broken into two parts: back and front end. The back end will be the algorithm 

and script that processes the image. The front end will be a GUI for client that allows 

them to easily select, process, and view the output of an image. 



sdmay20-13     6 

BACK END DELIVERABLES 

The back-end deliverable will be algorithm used to train the dataset and created the 

image crack detection software. This is also tied in with the front-end deliverable, as the 

front end also facilitates part of the backend as well. There are two parts for the 

backend deliverable. One part is the training portion that is used to train the algorithm 

given a dataset of cracked/non-cracked concrete imagery. Whether or not the client will 

be able to run this successfully will depend on how much processing power is available, 

as this portion is quite resource intensive. The testing portion of the backend deliverable 

is what is tied in with the front end. This part is the result of the training portion. It 

takes an epoch, which depending on how accurate the epoch was trained will detect 

cracks based off the input images given on the front end.  

FRONT END DELIVERABLES 

The primary front-end deliverable will be a functional user interface in the form of a 

desktop application/executable file. We based the functionality of our UI on several 

functional requirements. First, the UI should let the user select a desired directory of 

drone imagery that they want to detect cracks on. Next, the UI should be able to send 

all necessary commands to the back-end crack detection software easily so that it can 

run those images through the model without the user having to input any complicated 

shell commands. During execution, the UI should display the progress of the program 

towards completion, and finally, output all logged data and images to a known location 

on the user’s machine. In addition, the user interface will be easy to use and require no 

Python or coding knowledge. 

PREVIOUS WORK AND LITERATURE 

Detecting cracks using machine learning is a well-researched topic. Deep Learning-

Based Crack Damage Detection Using Convolutional Neural Networks [1] goes 

extensively into the mathematics and logic behind using a convolutional neural network 

to detect cracks. We used the same dataset that was used in their research to train our 

project. Road Crack Detection Using Deep Convolutional Neural Network [2] is another 

research paper that we looked at. This research was specifically attempting to detect 

cracks in roadway, which provided useful insights. There are also many projects in 



sdmay20-13     7 

public repositories on GitHub that have tried to solve this problem as well. We have 

linked a few in the appendix that we used, referenced, and experimented with. There 

are two main differences between these projects and ours. The first is that ours is being 

trained for use on roadways. This means it will be attempting to detect cracks in asphalt 

as well as concrete. It will also be working with aerial photographs instead of close up 

pictures of concrete, which is what most of the previous models were created and tested 

for. The other difference is that our project will also be developed to include a GUI. This 

will allow users who are not comfortable or accustomed to using the command line to 

use the project. 

PROJECT IMPLEMENTATION BREAKDOWN 

TECHNOLOGY CONSIDERATIONS 

The current technology used by researchers in identifying cracks in pavement involves 

printing off all the images and then circling by hand each crack that exists. This is very 

time consuming and should be automated. There have been attempts to use machine 

learning to detect cracks in pavement, however none of them are complete solutions. 

Most are not able to detect the difference between cracks in concrete and joints 

between different sections, and grass is frequently identified as cracks. Most examples 

we found also used datasets of around 40,000 images to train the program. In order for 

a model to be trained to a higher confidence level, there must be large datasets, which 

is hard to come by without manually creating/gathering the images for the set. 

BACK END 

DESIGN ANALYSIS 

After looking at different options for machine learning algorithms, we originally decided 

that PyTorch would be a better option than its closest competitor TensorFlow. This is 

because of PyTorch being easier to use and having more documentation. We have also 

created a Python script that crops images down so that they can be easily analyzed by 

the software. During the first semester, we were able to get a working PyTorch project 

to detect cracks with limited accuracy. However, in January, the project stopped training 

on the HPC clusters. After extensive troubleshooting we decided to switch to a similar 



sdmay20-13     8 

TensorFlow project so that we could continue to attempt to improve our results. During 

this transition, we also began training and running the model on less powerful personal 

computers and discovered that the training time did not increase dramatically. Our 

results did not change dramatically with the switch; however the model was much more 

reliable and we ran into fewer issues. 

TRAINING THE ALGORITHM 

For the algorithm to run, it first must be trained. The model does this by taking the 

images from the dataset and splitting them. In the dataset of 40,000 images, 30,000 of 

them are used to “train” the model by telling it whether the image contains a crack or 

not. After it has been trained, the remaining 10,000 images used in the dataset are used 

to test the model’s accuracy. Once the test images have been run, an epoch is returned. 

An epoch is the confidence level that the model can train itself to. This is how well the 

model can correctly choose whether a training image is cracked or not crack. The higher 

the epoch, the more “confident” the model is at correctly identifying the images as 

cracked or not. 

For the confidence level we were able to get an epoch accuracy of 97% using the 

PyTorch model. However, during January, the HPC stopped training the PyTorch model. 

After multiple attempts to try and solve the issues, we decided to try using a similar 

model using TensorFlow and train it on personal computers. Using this model, we were 

also able to get approximately the same confidence level. 

RUNNING THE ALGORITHM 

When running the algorithm, algorithm will choose the model with the highest epoch 

score. The model works by breaking down each input image into 128 x 128-pixel 

squares starting at the top left of the image. Each square is run through the model as a 

separate image and classified as a crack or not. If the image is a crack, the model 

moves on to the next grid square. If the image has been identified as having no crack, it 

masks it in black. 

Once all the individual grid squares have been processed, they are reassembled to 

create the input image again but with the black overlay hiding those squares that are 

identified not having a crack.  



sdmay20-13     9 

FRONT END 

DESIGN ANALYSIS 

When setting out to design a functional user-interface for our client to run our crack 

detection software, we realized we needed to find a suitable GUI framework to work 

with. After spending some time researching different frameworks, we decided upon 

PyQt5 due to its simplicity and ease of use for Python applications. PyQt5 is a set of 

Python bindings for Qt5, which is a group of libraries used to create simple/modern user 

interfaces for programs. QT also has a tool to help format the PyQt5 UI widgets called 

QT Designer, which we used to produce .ui files – inputted as a sort of “style-sheet” for 

our code. 

To work towards our final product, we designed a GUI prototype with a focus on 

functionality over appearance. This prototype has two buttons – one to let the user 

choose a directory of images, and another to run those images through the back-end's 

crack detection model. The UI shows the file path of the inputted files, as well as of the 

outputted images so the user can easily confirm where both are stored while using the 

app. 

 

Figure 1. Prototype UI 

To get the user interface to communicate with the back-end software, we had our code 

send OS commands to directly start up the crack detection software on the selected 

directory of images. We decided on this because after a lot of research we could not find 

a good way to maintain the command-line argument format when importing the back-

end code as a Python module into our front-end code. 



sdmay20-13     10 

Finally, our prototype will be converted into a full desktop application (.exe file) that can 

be installed and run by the user without installing Python or TensorFlow. This will be the 

final front-end product and will contain a user manual and installation guide to ensure 

ease of use.  

TESTING & RESULTS 

This section will discuss the testing process and results for both front and backend. The 

back end section details the process used to get the true accuracy of the algorithm 

along with a breakdown of results. The front end section details the criteria used for 

designing the user interface provided to the customer.  

BACK END 

In order to get the true accuracy of the algorithm, the images that were processed with 

the algorithm were compared to control images where the cracks were human 

identified. This section breaks down the process we used along with the results. 

PROCESS 

The process to compare results is straight forward. For every test image used, a control 

image was created. This image would be divided into 128 x 128-pixel grid squares and 

each square was identified as either having or not having a crack by hand.  

Once an image was processed through the algorithm, it was then compared to the 

control image by hand to see if the algorithm correctly identified whether or not a crack 

was present. 

To see the full detailed testing process, see Appendix 2. Detailed Testing Process.   

RESULTS 

The results we had for the true accuracy of the images varied greatly. There were a lot 

of factors that played into the ability of the algorithm to correctly identify whether a 

crack was present.  

The following table shows the results for several of the processed images.  

Image Road Angle True False True False Total Total Negative Positive 



sdmay20-13     11 

type Positive 

(Pavement 

Dot) 

Positive 

(Pavement) 

Negative 

(black) 

Negative 

(black 

dot) 

(552) Accuracy 

(%) 

Accuracy 

(%) 

Accuracy 

(%) 

8 asphalt askew 117 246 160 29 552 50.18 84.66 32.23 

11 asphalt askew 124 247 172 9 552 53.62 95.03 33.42 

7 asphalt askew 129 417 5 1 552 24.28 83.33 23.63 

10 asphalt askew 169 117 231 35 552 72.46 86.84 59.09 

FALL_RUN asphalt straight 185 104 184 79 552 66.85 69.96 64.01 

9 asphalt straight 202 115 197 38 552 72.28 83.83 63.72 

5 concrete straight 7 330 123 92 552 23.55 57.21 2.08 

3 concrete straight 48 379 125 0 552 31.34 100.00 11.24 

2 concrete straight 52 369 131 0 552 33.15 100.00 12.35 

1 concrete askew 71 397 77 7 552 26.81 91.67 15.17 

6 concrete straight 85 249 205 13 552 52.54 94.04 25.45 

4 concrete straight 104 182 259 7 552 65.76 97.37 36.36 

           

Askew 

Average 

(%) 

Straight 

Average 

(%) 

Asphalt 

Average 

(%) 

Concrete 

Average 

(%) 

  Overall Accuracy 47.74 86.99 31.56 

45.47 46.54 56.61 38.86        

 

Table 1. Accuracy Data Table 

In the table we can see the variance of the accuracy. While the results, vary greatly, it is 

important to consider some of the factors that may have contributed to the results such 

as the angle of the photo and type of pavement. Although they cannot explain all the 

inaccuracies, they can account for some. Below are some of the observations we made 

that while processing these results: 

1. The transition from grass to pavement was considered a crack by the algorithm 

2. The algorithm had trouble distinguishing between grooving in concrete and 

actual cracks. (One possible reason for this is the algorithm is looking at each 

128x128 image by itself and not the full image) 

3. The transition from pavement to gravel is considered a crack (also counted as a 

crack in the control images) 

4. The rock in gravel and asphalt was usually considered a crack by the algorithm 



sdmay20-13     12 

5. Grass itself, along with automobiles, is also counted as a crack by the program, 

this can be fixed with more test images and training.  

As seen in Table 1, the overall average accuracy rate is 47.74%. The program’s overall 

negative accuracy rate is at 87.00%, which is an excellent number to build from when 

training the program. The final positive accuracy rate hits low at 31.56% due to the 

multitude of false positive examples given above, such as grass, automobiles, and 

concrete grooving. Obtaining a multitude of test images with these false positive 

examples would have been our next step. Originally, it was thought that the angle the 

image was taken from would drastically skew the accuracy rate. After processing the 

images, it is obvious that there is only a small difference in the between straight on and 

slightly askew images, which are at 49.35% and 45.47% accuracy respectively. When 

comparing crack detection accuracy on concrete versus asphalt, asphalt has a 

dramatically higher accuracy rate of 56.61% compared to concrete’s 38.86%. This is 

believed to be due to the grooving in the concrete test images. 

Overall, these results were lower than expected especially due to the high epoch rating, 

approximately 97%, that was used when processing these images. However, this data 

does give extensive information about what type of photos will work best going forward. 

FRONT END 

Even though our front-end is a smaller portion of our overall project, we still tested 

abnormal use cases to provide our client with a polished, functional end product. 

PROCESS 

The process we used for testing the front-end was manual-based testing, where the 

graphical screens are manually checked in conformance with our deliverable’s 

requirements for the project. 

CHECKLIST 

We used the following checklist to create a polished user-interface experience: 

• Check all the GUI elements for size, position, width, length, and acceptance of 

characters or numbers. 



sdmay20-13     13 

• Check execution of the intended functionality of the application using the GUI 

• Check for errors when images are incorrectly  

• Check for clear demarcation of different sections on screen 

• Check font used in an application is readable 

• Check the alignment of the text is proper 

• Check the positioning of GUI elements for different screen resolution. 

RESULTS 

The results of the testing were straightforward, as we could visualize any problems that 

arose when going through the checklist above, such as, alternating different 

combinations of window size to check for alignment of the text issues. If needed, we 

would alter the code as needed and then re-test using the same scenario. Although this 

is a tedious way of testing, it worked well for us because of the few specific tasks that 

our UI needed to accomplish.  

 

CLOSING MATERIAL 

CONCLUSION 

In conclusion, the purpose of our project was to create a tool that could intake multiple 

images of roads, process them, and output results that would help users identify and 

prioritize infrastructure that needs maintenance and repair.  

The first goal of meeting 80% accuracy was not met. The program was trained with 

images of cracks (positive) and images of unbroken asphalt and concrete (negative). 

Overall, the final accuracy rate was determined to be 47.74%, which did not meet our 

initial goal. Some trends were noticed while processing the images that may allow us to 

better train the program. When an obstacle, such as a car or pole, is tested, it will 

typically come back as a false positive (preferred over false negative because of how the 

program is trained). One obstacle we did not foresee being analyzed as a crack was 

grass. This highly skews the accuracy rates in some images due to the altitude the 

images were taken. Altitude determines if the image is a majority grass or a majority 

road in many cases. We expected the skew of an image due to the angle it was taken to 



sdmay20-13     14 

have a dramatic impact, but numbers so far show very little difference when the image 

is straight on compared to askew. The program tends to do dramatically better when 

identifying cracks on asphalt roads compared to concrete. This may be due some 

concrete roads have a grooving throughout them that causes the program to return 

false positives.  

Overall, this program is not ready for use by the clients due to the low accuracy rate, 

but the UI makes it easily learnable for the client once the program detects cracks, crack 

type, and pavement type more accurately. 

REFERENCES 

[1] Cha, Young-Jin & Choi, Wooram & Buyukozturk, Oral. (2017). Deep Learning-Based 

Crack Damage Detection Using Convolutional Neural Networks. Computer-Aided Civil 

and Infrastructure Engineering. 32. 361-378.10.1111/mice.12263. 

[2] L. Zhang, F. Yang, Y. Daniel Zhang and Y. J. Zhu, "Road crack detection using deep 

convolutional neural network," 2016 IEEE International Conference on Image Processing 

(ICIP), Phoenix, AZ, 2016, pp. 3708-3712 

APPENDICES 

Concrete Data Set -   

https://data.mendeley.com/datasets/5y9wdsg2zt/2#file-c0d86f9f-852e-4d00-bf45-

9a0e24e3b932 

GitHub Repositories -  

● https://github.com/pytorch/examples/tree/master/mnist 

● https://github.com/pytorch/examples/tree/master/imagenet 

● https://github.com/warmspringwinds/pytorch-segmentation-detection 

● https://github.com/fyangneil/pavement-crack-detection 

● https://github.com/satyenrajpal/Concrete-Crack-Detection 

● https://github.com/Sarthakdtu/Road-Cracks-Detection-Neural-Network 

  

https://data.mendeley.com/datasets/5y9wdsg2zt/2#file-c0d86f9f-852e-4d00-bf45-9a0e24e3b932
https://data.mendeley.com/datasets/5y9wdsg2zt/2#file-c0d86f9f-852e-4d00-bf45-9a0e24e3b932
https://github.com/pytorch/examples/tree/master/mnist
https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/warmspringwinds/pytorch-segmentation-detection
https://github.com/fyangneil/pavement-crack-detection
https://github.com/satyenrajpal/Concrete-Crack-Detection
https://github.com/Sarthakdtu/Road-Cracks-Detection-Neural-Network


sdmay20-13     15 

APPENDIX 1. OPERATION MANUAL 

INSTALLATION GUIDE 

Since the UI prototype never ended up fully converted into an executable desktop 

application, the program as is cannot be run without having Python3, PyQt5, and all 

back-end dependencies installed on the local machine. This guide will help lay out the 

installation steps so our current product can run on any system. 

INSTALLATION STEPS 

I. Clone Project Repository onto Local Machine 

  

II. Install Python 3: 

1. Download the Latest Python 3 Release from python.org 

2. Run the installer by double-clicking on the downloaded file 

3. Make sure to check the box that says “Add Python 3.x to PATH” 

4. Click “Install Now” and finish the installer 

 

III. Install Required Dependencies: (use “pip install” in a shell window) 

• PyTorch 

• MatPlotlib 

• Numpy 

• h5py 

• torchvision 

• Pyqt5 

 

OPERATION 

Operating the application is quite simple if you have successfully installed everything 

listed above. This section will outline how to start up the application and then how to 

run our crack detection software on a chosen directory of images. 



sdmay20-13     16 

STARTING THE APPLICATION 

1. Navigate to the cloned repository “sdmay20-13” on your local machine 

2. Navigate to the folder named “gui” where you will see the app gui.py 

3. Start the application by either double-clicking gui.py or by entering “python 

gui.py” into your command line 

4. The program should start up in a few seconds 

RUNNING CRACK DETECTION 

Once the gui.py program has started up, it will look similar to Figure 1 below with only 

the two buttons labelled “Choose Files” and “Run Crack Detection”.  

 

Figure 1. Prototype UI 

The steps to run images through our crack detection model are as follows: 

1. Click the “Choose Files” button on the left. This will let you browse through your 

file system. 

2. Navigate to the directory that contains your set of desired input images and click 

“Select Folder”. 

3. The filepath for your selected directory will be shown under the leftmost button 

so you can confirm the location before moving on. 

4. Click the “Run Crack Detection” button to start inputting the images through the 

model. 

5. Text will appear below the rightmost button after crack detection has completed 

showing the output directory’s filepath. 

6. Repeat steps 1 through 5 on additional sets of images if needed. 

 



sdmay20-13     17 

APPENDIX 2. DETAILED TESTING PROCESS 

The purpose of this document is to outline the testing process to verify the true 

accuracy of the algorithm. The process itself is broken down into two sub-processes: 

creating control algorithm and comparison of images 

CREATING CONTROL IMAGES 

In order to compare data, we first needed to create a set of control data for the image 

we were using to test the algorithm. This was done in a multi-step process. 

1. Each image being used had a grid overlay placed on top of it to divide it into 

128x128 pixel boxes. 

 

Figure 2. Image with 128x128 grid overlay 

2. For each image, every 128x128 pixel square that contained a crack were marked 

with a pink square. When marking images, the following guidelines were used: 



sdmay20-13     18 

a. Transitions from grass to pavement were not counted as cracks 

 

Figure 3. Example of grass to road (not counted as crack) 

b. Grid squares where there is a road edge and a gravel should are counted 

as crack 

 

Figure 4. Example of road to gravel transition (counted as crack) 

 



sdmay20-13     19 

3. Once all the cracks were identified for an image, they were rechecked. 

 

Figure 5. Control Image 

COMPARISON OF ALGORITHM RUN IMAGES AND CONTROL IMAGES  

Once an image has been run through the algorithm the following steps were used to 

verify the true accuracy of the algorithm 

1. 1. A grid overlay is created from each control image where each grid square is 

128x128 pixels and each dot corresponds with a crack located within the 



sdmay20-13     20 

respective grid square. 

 

Figure 6. Grid overlay created 



sdmay20-13     21 

2. Once a transparent layer for a photo has been created, the output photo was 

then loaded into gimp with the layer placed over it. 

 

Figure 7. Grid overlay on top of image processed through algorithm 

3. After the two images were combined, each grid square was counted into one of 

the following categories.** 

True positive – Unmasked grid square with pink dot 

True negative – Black grid square with no dot 

False positive – Unmasked grid square with no pink dot 

False negative – Black grid square with pink dot 

**Grid squares that only had the overlay and no output (checkered), were not included 

in the results since no output was produced 

4. To gather the true accuracy of the algorithm for each image, the following 

equation was used: 

 Image Accuracy =  
# True Positives +  # True Negatives

# Total Grid Squares
 

 


	Executive Summary
	Engineering standards & Design Practices
	Summary of Deliverables
	Applicable courses from Iowa State University Curriculum
	New Skills/Knowledge Acquired Not Taught In Courses

	Figures and Tables
	Definitions
	Introduction
	Acknowledgement
	Problem and Project Statement
	Problem Statement
	Project Statement

	Intended Users and Uses
	Operational Environment
	End Product and Deliverables
	Back End Deliverables
	Front end Deliverables

	Previous Work And Literature

	Project implementation breakdown
	Technology Considerations
	Back end
	Design aNalysis
	Training The Algorithm
	Running the Algorithm


	Front End
	Design aNalysis


	Testing & Results
	Back End
	Process
	Results

	Front End
	Process
	Checklist
	Results


	Closing Material
	Conclusion
	References
	Appendices

	Appendix 1. Operation Manual
	Installation GUIDE
	INSTALLATION STEPS

	Operation
	Starting the Application
	RUNNING CRACK Detection


	Appendix 2. Detailed Testing Process
	Creating control Images
	Comparison of Algorithm Run Images and Control Images


